How can we design relationships between the most primitive and the most sophisticated life forms? Can we design wearables embedded with synthetic microorganisms that can enhance and augment biological functionality? Can we design wearables that generate consumable energy when exposed to the sun?
We explored these questions through the creation of Mushtari, a 3D printed wearable with 58 meters of internal fluid channels. The wearable is designed to function as a microbial factory that uses synthetic biology to convert sunlight into useful products for the wearer. It does so with a symbiotic relationship between two organisms: a photosynthetic microbe – such as microalgae or cyanobacteria - and compatible microbes – such as baker’s yeast and E. coli - that make useful materials. The photosynthetic microbe converts sunlight to sucrose – table sugar – which is then consumed by compatible microbes and converted into materials such as pigments, drugs, food, fuel and scents. This is a form of microbial symbio