[Wild Mathing] ГИЛЬБЕРТ. Величайшие проблемы XX века

🎯 Загружено автоматически через бота: 🚫 Оригинал видео: 📺 Данное видео принадлежит каналу «Wild Mathing» (@WildMathing). Оно представлено в нашем сообществе исключительно в информационных, научных, образовательных или культурных целях. Наше сообщество не утверждает никаких прав на данное видео. Пожалуйста, поддержите автора, посетив его оригинальный канал. ✉️ Если у вас есть претензии к авторским правам на данное видео, пожалуйста, свяжитесь с нами по почте support@, и мы немедленно удалим его. 📃 Оригинальное описание: Давид Гильберт — последний на свете математик-универсал. Благодаря уникальному способу саморазвития он стал математиком №1 в мире. А знаменитые проблемы Гильберта, сформулированные на рубеже XIX и XX веков, на долгие годы определили развитие царицы наук. Задачник: Мои курсы: VK: Этот фильм о красоте математики и о выдающемся человеке. Эпоха золотого века Гёттингена и немецкой науки; период, когда парадоксы теории множеств и вопросы аксиоматики поставили именитых ученых в тупик. На Международном конгрессе 1900 года Давид Гильберт становится связующим звеном для специалистов всех областей математики. Какие проблемы он сформулировал в своем знаменитом докладе и решены ли они сейчас? — С чего все началось — Школьные годы — Знаменитый список задач Гильберта — Особый способ учиться — Столы, стулья и пивные кружки — Как узнать Гильберта в толпе — Ученый и учитель — Кульминация и эпилог БОЛЬШЕ КРУТЫХ ФИЛЬМОВ О МАТЕМАТИКЕ 1. Эйлер. Грандиозное математическое наследие: 2. Галуа. Революционер в математике: 3. Рамануджан. Гений, опередивший свое время: 4. Зачем нужна математика: 5. Софья Ковалевская. Королева математики: ЛИТЕРАТУРА 1. Констанс Рид. Гильберт — М.: Наука, 1977 — 368 с. 2. Давид Гильберт. Избранные труды. Т.I. Теория инвариантов. Теория чисел. Алгебра. Геометрия. Основания математики. — М.: Факториал, 1998 — 575 с. 3. Давид Гильберт. Избранные труды. Т.II. Анализ. Физика. Проблемы. Personalia — М.: Факториал, 1998 — 608 с. 4. Давид Гильберт. Основания геометрии — Петроград: Сеятель, 1923 — 152 с. 5. А. А. Болибрух. Проблемы Гильберта (100 лет спустя) — М.: МЦНМО, 1999 — 368 с. 6. Проблемы Гильберта. Сборник под общей редакцией П. С. Александрова — М.: Наука, 1969 — 240 с. 7. Мир математики: в 45 т. Т. 39. Гильермо Курбера. Математический клуб. Международные конгрессы. / Пер. с исп. — М.: Де Агостини, 2014 — 160 с. #ЖЗЛ #наука #математика
Back to Top