This Team won the Minecraft RL BASALT Challenge! (Paper Explanation & Interview with the authors)

#minerl #minecraft #deeplearning The MineRL BASALT challenge has no reward functions or technical descriptions of what’s to be achieved. Instead, the goal of each task is given as a short natural language string, and the agent is evaluated by a team of human judges who rate both how well the goal has been fulfilled, as well as how human-like the agent behaved. In this video, I interview KAIROS, the winning team of the 2021 challenge, and discuss how they used a combination of machine learning, efficient data collection, hand engineering, and a bit of knowledge about Minecraft to beat all other teams. OUTLINE: 0:00 - Introduction 4:10 - Paper Overview 11:15 - Start of Interview 17:05 - First Approach 20:30 - State Machine 26:45 - Efficient Label Collection 30:00 - Navigation Policy 38:15 - Odometry Estimation 46:00 - Pain Points & Learnings 50:40 - Live Run Commentary 58:50 - What other tasks can be solved? 1:01:55 - What made the difference? 1:07:30 - Recommendations & Conclusion 1:11:10 - Full Runs: Waterf
Back to Top