From Deep Learning of Disentangled Representations to Higher-level Cognition

One of the main challenges for AI remains unsupervised learning, at which humans are much better than machines, and which we link to another challenge: bringing deep learning to higher-level cognition. We review earlier work on the notion of learning disentangled representations and deep generative models and propose research directions towards learning of high-level abstractions. This follows the ambitious objective of disentangling the underlying causal factors explaining the observed data. We argue that
Back to Top