Полтора [3] // Михаил Тихонов

Бывают объекты непрерывные, а бывают дискретные. Например, размерность пространства. Она дискретна: пространства бывают одномерные, двумерные, трехмерные… А вот размерности «полтора» не бывает. Или бывает? Оказывается, дискретные объекты иногда можно обобщить до непрерывных, и на первой половине курса мы разберем несколько конкретных примеров. Начав с совсем тривиальной арифметики, мы быстро дойдем до таких «странных» вещей, как дробные производные, а на второй лекции разберем красивый пример из алгебраической геометрии. Эти примеры проиллюстрируют один общий рецепт нетривиальных обобщений: если суметь переговорить привычные понятия на другом языке, то «сложные» операции могут стать простыми, и наоборот. Тихонов Михаил Андреевич Летняя школа «Современная математика» г. Дубна, дом отдыха «Ратмино» 20-26 июля 2017 г. Все лекции:
Back to Top