ChatGPT: A 30 Year History | How Neural Networks Learned to Talk

This video explores the journey of language models, from their modest beginnings through the development of OpenAI’s GPT models. Our journey takes us through the key moments in neural network research involved in next word prediction. We delve into the early experiments with tiny language models in the 1980s, highlighting significant contributions by researchers like Jordan, who introduced Recurrent Neural Networks, and Elman, whose work on learning word boundaries revolutionized our understanding of language processing. It leaves us with a question: what is thought? Is simulated thought, thought? Featuring Noam Chomsky Douglas Hofstadter Michael I. Jordan Jeffrey Elman Geoffrey Hinton Ilya Sutskever Andrej Karpathy Yann LeCun and more. (Sam altman) My script, references & visualizations here: consider joining my channel as a YouTube member: This is the last video in the series “The Pattern Machine“ you can watch it all here: 00:00 - Introduction 00:32 - hofstader’s thoughts on chatGPT 01:00 - recap of supervised learning 01:55 - first paper on sequential learning 02:55 - first use of state units (RNN) 04:33 - first observation of word boundary detection 05:30 - first observation of word clustering 07:16 - first “large“ language model Hinton/Sutskever 10:10 - sentiment neuron (Ilya | OpenAI) 12:30 - transformer explaination 15:50 - GPT-1 17:00 - GPT-2 17:55 - GPT-3 18:20 - In-context learning 19:40 - ChatGPT 21:10 - tool use 23:25 - philosophical question: what is thought?
Back to Top