Much of enumerative combinatorics concerns the question: “Count the number a_n of elements of a set S_n for n=1,2,...“ We discuss four types of answers: an exact formula, a recursive formula, a formula for the generating function, and an asymptotic formula. We illustrate these four answers by counting the domino tilings of a 2 x n rectangle.
Lecture notes at:
San Francisco State University (San Francisco, USA)
Universidad de Los Andes (Bogota, Colombia)
Fall 2013
3 views
0
1
9 years ago 00:34:52 525
Lecture 1. Dawn of Freedom
10 months ago 01:35:47 35
Cosmology Lecture 1
9 years ago 01:58:15 42
Special Relativity | Lecture 1
9 months ago 01:25:38 21
HIST 3394 LECTURE 1
8 years ago 01:46:33 151
Lecture 1 | The Theoretical Minimum
9 years ago 01:51:38 60
Steve Huston Lecture 1
11 years ago 02:06:29 30
Darwin’s Legacy | Lecture 1
9 years ago 01:19:50 37
Lecture 1: Overview
7 years ago 01:54:35 7
constitutional law lecture 1
8 years ago 01:46:07 147
Geography of United States Elections | Lecture 1
10 years ago 01:51:11 209
Lecture 1 | Modern Physics: Quantum Mechanics (Stanford)
10 years ago 02:40:13 30
Autodesk Maya Lecture #1 • Курс
8 years ago 01:24:49 2
Komarov, Lecture # 1
11 years ago 01:29:11 89
Classical Mechanics | Lecture 1
8 years ago 00:22:26 123
Classification of Bacteria (Antibiotics - Lecture 1)
10 years ago 01:58:46 300
Linear Algebra: Lecture 1 (Princeton University)
8 years ago 01:40:06 166
Advanced Quantum Mechanics Lecture 1
12 years ago 00:36:18 14
MIT Biology lecture 1 (Ru subs)
3 years ago 00:13:24 284
Group Theory, lecture 1.1: Symmetries
11 years ago 00:55:49 69
Abarita’s lecture, part 1
5 years ago 01:43:03 1
Cosmology | Lecture 1
4 years ago 00:48:54 1
MCENVD lecture 1
9 years ago 01:49:24 312
Lecture 1 | Modern Physics: Special Relativity (Stanford)